💕 Надішли валентинку!

Створи особливе повідомлення 💌 14.02

Надіслати ❤️
Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more - Aleksander Molak - Kebuk

Causal Inference and Discovery in Python: Unlock the secrets of modern causal machine learning with DoWhy, EconML, PyTorch and more

Автор: Aleksander Molak
Видавництво: Packt Publishing
Немає в наявності
Кількість сторінок456
Рік видання2023
Demystify causal inference and casual discovery by uncovering causal principles and merging them with powerful machine learning algorithms for observational and experimental data
Key Features
  • Examine Pearlian causal concepts such as structural causal models, interventions, counterfactuals, and more
  • Discover modern causal inference techniques for average and heterogenous treatment effect estimation
  • Explore and leverage traditional and modern causal discovery methods
Book Description
Causal methods present unique challenges compared to traditional machine learning and statistics. Learning causality can be challenging, but it offers distinct advantages that elude a purely statistical mindset. Causal Inference and Discovery in Python helps you unlock the potential of causality.

Де можна придбати

М'яка обкладинка
Немає в наявності 1300 грн

Коментарі

Немає коментарів. Будьте першим, хто залишить коментар!