Data Science Solutions with Python. 1st Ed

Видавництво: Apress
В наявності
Кількість сторінок120
Рік видання2022
Apply supervised and unsupervised learning to solve practical and real-world big data problems. This book teaches you how to engineer features, optimize hyperparameters, train and test models, develop pipelines, and automate the machine learning (ML) process.
The book covers an in-memory, distributed cluster computing framework known as PySpark, machine learning framework platforms known as scikit-learn, PySpark MLlib, H2O, and XGBoost, and a deep learning (DL) framework known as Keras.
The book starts off presenting supervised and unsupervised ML and DL models, and then it examines big data frameworks along with ML and DL frameworks. Author Tshepo Chris Nokeri considers a parametric model known as the Generalized Linear Model and a survival regression model known as the Cox Proportional Hazards model along with Accelerated Failure Time (AFT). Also presented is a binary classification model (logistic regression) and an ensemble model (Gradient Boosted Trees).

Де можна придбати

М'яка обкладинка
700 грн

Коментарі

Немає коментарів. Будьте першим, хто залишить коментар!

Щоб залишити коментар, будь ласка, увійдіть або зареєструйтесь