Hands-On Graph Neural Networks Using Python: Practical techniques and architectures for building powerful graph and deep learning apps with PyTorch

Автор: Maxime Labonne
Видавництво: Packt Publishing
В наявності
Кількість сторінок354
Рік видання2023
Design robust graph neural networks with PyTorch Geometric by combining graph theory and neural networks with the latest developments and apps
Key Features
  • Implement state-of-the-art graph neural network architectures in Python
  • Create your own graph datasets from tabular data
  • Build powerful traffic forecasting, recommender systems, and anomaly detection applications
Book Description
Graph neural networks are a highly effective tool for analyzing data that can be represented as a graph, such as social networks, chemical compounds, or transportation networks. The past few years have seen an explosion in the use of graph neural networks, with their application ranging from natural language processing and computer vision to recommendation systems and drug discovery.

Де можна придбати

М'яка обкладинка
100 грн

Коментарі

Немає коментарів. Будьте першим, хто залишить коментар!

Щоб залишити коментар, будь ласка, увійдіть або зареєструйтесь