Practical Weak Supervision: Doing More with Less Data. 1st Ed

Видавництво: O'Reilly
В наявності
Кількість сторінок200
Рік видання2021
Most data scientists and engineers today rely on quality labeled data to train machine learning models. But building a training set manually is time-consuming and expensive, leaving many companies with unfinished ML projects. There's a more practical approach. In this book, Wee Hyong Tok, Amit Bahree, and Senja Filipi show you how to create products using weakly supervised learning models.
You'll learn how to build natural language processing and computer vision projects using weakly labeled datasets from Snorkel, a spin-off from the Stanford AI Lab. Because so many companies have pursued ML projects that never go beyond their labs, this book also provides a guide on how to ship the deep learning models you build.

Де можна придбати

М'яка обкладинка
600 грн

Коментарі

Немає коментарів. Будьте першим, хто залишить коментар!

Щоб залишити коментар, будь ласка, увійдіть або зареєструйтесь