Machine Learning: A Probabilistic Perspective

Автор: Kevin P. Murphy
Видавництво: The MIT Press
Немає в наявності
Кількість сторінок1068
Рік видання2012

today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, linear algebra and as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and work examples drawn from such application domains as biology, text processing, computer vision, and robotics.

Де можна придбати

М'яка обкладинка
Немає в наявності Оновлено вчора50 грн

Коментарі

Щоб залишити коментар, будь ласка, увійдіть або зареєструйтесь