Math and Architectures of Deep Learning

Видавництво: Manning
В наявності
Кількість сторінок552
Рік видання2024
Shine a spotlight into the deep learning “black box”. This comprehensive and detailed guide reveals the mathematical and architectural concepts behind deep learning models, so you can customize, maintain, and explain them more effectively.

Inside Math and Architectures of Deep Learning you will find:
  • Math, theory, and programming principles side by side
  • Linear algebra, vector calculus and multivariate statistics for deep learning
  • The structure of neural networks
  • Implementing deep learning architectures with Python and PyTorch
  • Troubleshooting underperforming models
  • Working code samples in downloadable Jupyter notebooks
The mathematical paradigms behind deep learning models typically begin as hard-to-read academic papers that leave engineers in the dark about how those models actually function.

Де можна придбати

М'яка обкладинка
400 грн

Коментарі

Немає коментарів. Будьте першим, хто залишить коментар!

Щоб залишити коментар, будь ласка, увійдіть або зареєструйтесь